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Abstract 
 
Determination of impact load is important for detecting and analyzing the flaws in thick plate. In industrial plants, 

thick aluminum plate is popularly used and impact load is identified by convolving the acoustic waveform, which is 
measured with sensors arrayed on the plate, and by Green’s function, which is the transfer function between impacting 
position and sensor. In practical situations, it is difficult to measure Green’s function. In this paper, the impact load on 
the plate is inversely recovered by using Green’s function and the acoustic waveform. Green’s function and the acous-
tic waveform are theoretically obtained based on the plate theory. There are three plate theories. One is the classic plate 
theory (CPT), which has been used for thin plate. The others are the exact plate theory and the approximated shear 
deformation theory (SDPT), which are used for the thick plate because the CPT overestimates the group velocity at 
high frequency in the thick plate. In this paper, the thick plate theory is used for the prediction of the acoustic waveform. 
This theoretical Green’s function can be also used for the inverse problem of impact load based on the experimental 
method. 
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1. Introduction 

Elastic plates have been extensively used in aircraft, 
aerospace, automotive, industrial plant and power 
plants. One of major concerns in these plate structures 
is the damage due to impact loads. For instance, a 
low-velocity impact can cause delamination inside 
composite structures. If undetected, the damage can 
grow, leading to catastrophic failure of the structure. 
Therefore, a system that can detect the impact loca-
tion and estimate the amount of impact energy would 
be very helpful in the health monitoring of structures. 
In general, the analysis of structures subject to dy-
namic loads can be categorized into three basic prob-
lems: (a) given the input and the system parameters, 
determine the output, (b) given the input and the out-

put, determine the system parameters, and (c) given 
the system parameters and the output, determine the 
input. While problems of the first category are de-
scribed as direct problems, the second and third types 
are inverse problems. Inverse problems are of great 
current interest in a variety of applications and they 
have been investigated extensively by many authors 
[1-5]. Therefore, a system that can detect the location 
of impact and estimate its energy can be very helpful 
in developing health-monitoring systems for ad-
vanced structures. Michael and Pao [1] developed a 
method that determined a dynamic force by using 
wave motion measurement. In this case the location 
of the impact load was known. In many impact load 
problems, however, the location of impact load is 
generally not known. Therefore, in order to identify 
the location of impact load, various methods are in-
vestigated. In the acoustic emission technique, the 
standard method of planar source location is to place 
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three or more transducers on the surface of elastic 
plate and triangulate the source position by using the 
differences in arriving times of the acoustic wave at 
sensors [6-8]. After the location of impact load is 
detected, a theoretical solution to impact load is used 
for the determination of impact energy. Gaul and 
Hurlebaus adapt the classic plate theory (CPT) as a 
theoretical solution to an impact load after identifica-
tion of the location of impact load [2]. In determining 
the impact energy, there are different approach meth-
ods [3, 4]. These methods are based on structure 
model to predict the response to impact load. These 
models characterize the relation between the input 
and the sensor output. The response comparator com-
pares the measured sensor signal with the predicted 
model. Sensors are arrayed on the plate. One method 
used the strain gauges as sensors [3]. The other used 
the piezoelectric film as sensors [4]. These methods 
used the classic plate theory as a prediction model 
predicting the response to an impact load in the struc-
ture model. If the thickness of elastic plate is small, a 
sufficiently accurate response can often obtained 
through class plastic theory. However, a full elasto-
dynamic theory (it is called the exact solution) needs 
to be employed in the solution of the problem in order 
to obtain meaningful results or the approximate 
SDPT; where the transverse shear and rotary inertia 
are retained in the modeling the dynamic deforma-
tions across the thickness of plate, should be used [9, 
10]. In general, because of being computationally 
intensive, the approximate SDPT, instead of the exact 
solution, can be used [11]. In this study, an advanced 
experimental method, the theoretical method is pre-
sented to determine the impact force based on the 
theoretical Green’s function and the simulated wave-
form based on either the exact plate theory or the 
approximate SDPT for the plate as shown in Fig. 1.  

 
 

 
 
Fig. 1. Geometry of point load problem. 

 

2. Theory of impact load in plate  

Many researchers have extensively researched the 
theoretical solution to the surface load on the plate. 
Green’s function in an infinite plate needed for this 
study can also be solved by exact plate theory, ap-
proximate SDPT, but the CPT is not employed since 
it is well known that the classical plate bending theory 
of the plate underestimates the deflections as well as 
the stresses and overestimates the phase velocity of 
the propagating waves. The plate used for theoretical 
model is composite laminates as shown in Fig. 1. This 
model is used for the identification of impact load in a 
thick isotropic plate in this study.  

 
2.1. Theory of elastodynamics 

The behavior of elastic waves propagating through 
a composite material is determined by its elastic 
properties. Composite materials are known to be 
strong dissipative. For fiber–reinforced composites, 
dissipation of the waves is caused by the viscoelastic 
nature of the resin and by scattering from the fibers 
and other in homogeneities. Both effects can be mod-
eled in the frequency domain by assuming that the 
stiffness constants, Cij are complex and frequency 
dependent. A possible form of Cij that can be modeled 
by the essential features of the dissipation caused by 
these factors has been given in Mal and Bar-Cohen 
[12] and will be used here. Assuming that the symme-
try is along the x1-axis the constitutive relation for the 
orthotropic material can be expressed in the fre-
quency domain in the form [13]. 
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where ijσ  is the (Fourier time) transform of 
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Cauchy's stress tensor, iu is the transform of dis-
placement components, C44 = (C22 - C23)/2 and the 
five independent stiffness constants of the material 
are C11, C12, C22, C23 and C55. Modeling the effective 
elastic moduli of composite materials has been the 
topic of many studies. For low frequencies and low 
fiber concentration, the theoretical prediction of the 
effective elastic constants is in good agreement with 
experimental results. On the other hand, for high fre-
quencies the theoretical estimates are not satisfactory 
since the effect of wave scattering by the fibers be-
comes significant. For fiber-reinforced composite 
materials, dissipation of the waves is caused by the 
viscoelastic nature of the resin and by multiple scat-
tering from the fibers as well as other inhomogenei-
ties. Both of these effects can be modeled by assum-
ing complex and frequency-dependent stiffness con-
stants, Cij, in the form [12]. 
 

11 22
11 22

55 11 55 22

12 55
12 55

55 12 55

22 23 5544
44 55

55 44

, ,
1 / 1 /

1 /( )

,
2 11 /

c cC C
ip c c ip c c

c cC C
ip c c c

C C ccC C
ipip c c

= =
+ +

++ =
+ +

−= = =
++

 (2a) 

 
where cij is the real, perfectly elastic stiffness constant 
and p is the damping factor which can be expressed in 
the form, 

 
2
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= + − −   (2b) 

 
The parameter p0 represents the effect of material 

dissipation, a0 models the effect of scattering due to 
the fibers and other inhomogeneities, and ω0 is a fre-
quency below which the scattering effect is negligible. 
For multilayered laminates, each layer is assumed to 
be transversely isotropic, with its own axis of symme-
try along the fibers, and is bonded to its neighbors 
with a thin layer of the matrix material. In the present 
analysis, these interfacial layers are ignored for the 
sake of simplicity, but if needed, they can be incorpo-
rated in the analysis without difficulty. 

 
2.2. Exact solution for impact load  

We introduce Fourier time transforms of all time-
dependent variables f through 
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and denote the Fourier time transform of displace-
ment and stress component ui (x,t),σij (x,t) by 

,ˆ ˆ( , ), ( , )i i ju x xω σ ω . Then, under the assumption of 
initial rest, ,ˆ ˆ( , ), ( , )i i ju x xω σ ω  are the solution of the 
system 
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where the applied load f (t) is assumed to be concen-
trated at the origin on the top surface of the plate and 
ˆ ( )f ω is its Fourier time transform. The Cauchy’s 

equation of motion (4) must be supplemented by the 
constitutive Eq. (1), and the solution must satisfy the 
outgoing wave condition at large lateral distance from 
the load. In order to obtain a formal solution of the 
boundary value problem in the frequency domain, we 
introduce double spatial Fourier transforms of 
ˆ ( , )iu x ω  and ,ˆ ( , )i j xσ ω  through  
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where 1 2 3ˆ ( , , , )iu x x x ω is the ith directional Green’s 
function 1 2 3ˆ ( , , , )u

ijg x x x ω  on the top of the plate due 
to impact force f(t) = δ(t) at the origin. Substitution 
from Eq. (9a,b) into Eq. (7) and Eq. (8) leads to a 
two-point boundary value problem of a system of 
ordinary differential equations for Ui(x3) which can in 
principle be solved. To this end, it is convenient to 
introduce the six dimensional “stress-displacement 
vector” {S} in the transformed domain, defined by 

 
{ } { }3 3 3 3( ) ( ) ( )i iS x U x x= Σ   (7) 
 
{S} can be expressed in a partitioned matrix prod-

uct form as [14]. 
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where  
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In the above, ci

± are complex constants related to 
downgoing and upgoing waves within the laminate, 
[Qij] are 3×3 matrices, and ζi are the “vertical” wave 
numbers of the three possible waves in the composite 
with “horizontal” wave number ξ1, ξ2. The expres-
sions for [Qij] are given by 
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subject to Im( ) 0, 1,2,3.j jζ ≥ = The six constants must 
be determined from the boundary conditions (5b,c), 
which can be restated in the spatial transform domain 
as  
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The use of Eq. (8) in Eq. (17a,b) leads to the fol-

lowing system of equations for the 12 unknowns, 
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where [I] is the 3×3 identify matrix, 
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and we have used the notation 
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Eqs. (19a,b) can be solved to yield 
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In case of a uniform half-space, H→∞, {E}= [0] 

and from Eq. (23a), 
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Eqs. (23a,b) give the transformed surface dis-

placement and Eq. (8) can then be used to obtain the 
transformed displacement and stress components in 
the interior of the plate. The Fourier time-transformed 
displacements and stresses are given by the double 
integral expressions (6a,b). 

 
2.3. Approximate solution for impact load 

If the thickness of the laminate, H, is much smaller 
than the wavelengths, then the problem can be solved 
by approximate methods. It is well known that the 
classical plate bending theory of the plate underesti-
mates the deflections as well as the stresses and over-
estimates the phase velocity of the propagating waves. 
The classical theory becomes more and more inaccu-
rate at higher frequencies. Refined higher order theo-
ries have been developed by many authors in an effort 
to improve the accuracy of the approximate results 
[11]. The first order shear deformation plate theory 

(SDPT) retaining transverse shear and rotary inertia 
of the plate elements is used here. Assuming that the 
xy-plane is the mid-plane of the laminate, the dis-
placement components within the laminate are as-
sumed to be of the form, 
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where (u0, v0, w0) are the displacement components at 
a point in the mid-plane, and ψx and ψy are the rota-
tions of a line element, originally perpendicular to the 
longitudinal plane, about the y and x axes, respec-
tively. The governing equations for the out of plane 
displacement for the point load problem can be ex-
pressed in the form: 
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The solution of these equations can be obtained by 

the transform technique in the form 
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where ˆ ( , , )x x yψ ω , ˆ ( , , )y x yψ ω  , 0ˆ ( , , )w x y ω are the 
Fourier time transforms of ( , , )x x y tψ , ( , , )y x y tψ , 

0( , , )w x y t , respectively. When the surface load f (t) is 
delta function δ(t) at origin 0, the displaced 

0 1 2 3ˆ ( , , , )w x x x ω  is Green’s function displacement 
1 2 3ˆ ( , , , )u

ijg x x x ω . The unknown functions W0, ψx ψy 
satisfy the system of linear equations 
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matrix [M] is given by 
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2.4 Recovery of impact load  

In the plate as shown in Fig. 1, the source is located 
at 0 (0,0,0)=r  and a receiver is at 1 2 3( , , )x x x=r , 
where H is the plate thickness. It is assumed that it 
can be modeled as infinite in extent. The Green’s 
function displacement, g ij

u
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the displacement response in the ith direction at r and t 
due to an impulsive concentrated force of unit magni-
tude in the j th direction at r0 and t = 0. Green’s func-
tion displacement tensor g ij

a is given by differentiat-
ing g ij

u
. Thus, for a point force fj (r0

,t) acting at r0 that 
is zero for t <0, the resulting displacement is,  
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  (32) 

 
where the asterisk denotes a convolution integral in 
the time variable. According to linear system theory, 
the Fourier transform version of displacement is 

given by, 
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When acceleration is used, it is expressed as fol-

lows: 
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The Fourier transform version of impact load is es-

timated by, 
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=

= ×∑r r r r   (35) 

 
The time history of impact load is obtained by in-

verse Fourier transforms of ˆ ( )jf ω . In this paper, the 
direction of force is the only vertical. 

 
2.5. Numerical results 

A major objective of this paper is to determine the 
impact force throughout measurement of the acoustic 
signal at the arbitrary point r in the plate as shown in 
Fig. 1. In order to do Green’s function between im-
pact point and the arbitrary point r is required. 
Green’s function is a impulse response function at 
point r when impact force f (t) is delta function δ (t). 
The material property of the aluminum plate used for 
this numerical analysis is given by Table 1. The phase 
velocity of this plate is calculated with exact plate 
theory [15], Mindlin’s approximate SDPT theory [9], 
and CPT theory [16]. For isotropic aluminum plate,  

 
C22 = C22= C33 = λ + 2µ   (36a) 
C12=C13=C23 = λ   (36b) 

 
and 

 
Table 1. Material properties. 
 

Aluminum plate 
Young’s Modulus (E) 70Gpa 

Poisson’s ratio (ν) 0.3 
Density (ρ) 2760kg/m3 

Thickness(H) 10mm 
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 C44 = C55 = C66 = µ   (36c) 
 
where the constants λ and µ are known as Lame con-
stants. These can be expressed in terms of Young’ 
modulus E and Poisson’s ratio ν [13]. Fig. 2 shows 
dispersive curves for the multi mode of the aluminum 
plate. The phase velocity of A0 flexible mode is com-
pared with the phase velocity obtained by using the 
SDPT and the CPT. These results are illustrated in 
Fig. 3. From these results, it is confirmed that the 
classical plate bending theory of the plate overesti-
mates the phase velocity of the propagating waves. 
The phase velocity using SDPT is the same as the 
phase velocity of dispersive A0 mode obtained by 
using exact solution. The group velocity using exact 
solution is obtained by calculating slope of angular 
frequency (ω) verse wave number (ξ) [15]. 
 

 
 
Fig. 2. Dispersive curve for the multi mode of aluminum 
plate. 
 

 
 
Fig. 3. Comparison of propagation wave velocity for a flexi-
ble wave in an aluminum plate. 

1

p
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p

p

cdC dcd
c d
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ξ ω

ω
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−

  (37) 

 
where cp is phase velocity and ω is angular velocity. 
Fig. 4 shows the comparison between Green’s func-
tion displacement g ij

u between r=0 and r =200mm 
obtained by using exact solution and that by using 
SPDT in aluminum plate. The top plot is non-filtered 
Green’s functions. Bottom plot is Green’s functions 
filtered by a Butterworth band pass filter from 
2,000Hz to 4,000Hz. In this case, sampling frequency 
was 81,920Hz. According to dispersive curves as 
shown in Fig. 2, up to this sampling frequency, the 
A0 antisymmetric flexible mode and S0 symmetric 
modes overrule the wave propagation in plate. There-
fore, the non-filtered Green’s functions can be af-
fected by S0 Lamb modes in exact solution and its 
shape is different with that obtained by using SDPT. 
However, at lower frequency, the filtered Green’s 
function in exact solution is exactly the same as 
Green’s function in SPDT because at this frequency 
the dispersive curve is affecting only the A0 mode. 
Fig. 5 also shows a comparison between Green’s 
function at r = 200mm obtained by using exact solu-
tion and that by using SPDT in aluminum plate. In 
this case, sampling frequency was 4,096,000Hz. The 
top plot is non-filtered Green’s functions. Bottom plot 
is Green’s functions filtered by a Butterworth band 
pass filter from 10,000Hz to 200,000Hz. According 
to dispersive curves as shown in Fig. 2, up to this 
sampling frequency, the many antisymmetric flexible 
modes and symmetric modes overrule the wave 
propagation in plate. Therefore, the non-filtered 
Green’s functions can be affected by many Lamb 
modes in exact solution and its shape is different with 
the shape of Green’s function obtained by using 
SDPT. However, the filtered Green’s function is less 
affected by many Lamb modes than non-filtered 
modes. In this case, the A0 flexible mode is the 
dominant mode overruling the wave shape of Green’s 
function but still has oscillation due to S0 mode and 
A1 mode. Therefore, if the thickness of the laminate, 
H, is much smaller than the wavelength, then the 
problem can be solved by approximate SDPT. Fig. 6 
shows the recovered force by deconvolving the simu-
lated response signal into force and Green’s function 
based on Eq. (35). They are completely correspond-
ing. It is natural because it is a simulated signal. 
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Fig. 4. shows the comparison between Green’s function at r = 
200 mm obtained by using exact solution and that by using 
SPDT in aluminum plate. Sampling frequency is 81920Hz (a) 
non-filtered Green’s function (b) filtered Green’s function 
with Butterworth band pass filter from 2,000Hz to 4,000Hz:  
(……): Exact solution, ( ____ ): SDPT. 
 

 
 
Fig. 5. shows the comparison between Green’s function at r = 
200 mm obtained by using exact solution and that by using 
SPDT in aluminum plate. Sampling frequency is 
4,096,000Hz (a) non-filtered Green’s function (b) filtered 
Green’s function with Butterworth band pass filter from 
10,000Hz to 200,000Hz. (……): Exact solution, ( ____ ): 
SDPT. 
 

 
 
Fig. 6. Recovered force by deconvolving the simulated re-
sponse signal into force and Green’s function: (……) True 
impact load, ( ____ ) Recovered impact load. 

3. Theoretical and experimental validation for 
waveform 
A schematic of the experimental setup is shown in 

Fig. 7 and Fig. 8. An aluminum plate was used, with 
dimensions 1200mm × 1200mm and 10mm. The 
impact load was excited by the impact hammer with 
aluminum tip. The model of impact hammer used for 
the test is ENDEVECO model 2302. Fig. 9 shows the 
sensor arrangement and location of the impact for the 
experiment. The accelerometers used to detect waves 
in the plate were B & K accelerometer type 4390. The 
outputs from the accelerometers were amplified by 
using the charge and signal conditioner of END-
EVECO model 133. The signals were then digitized 
with a TDS2034 color 4-channels digital oscilloscope 
at a sampling rate of 50kHz. Software for the data 
transfer from scope to the computer was supplied by 
Texas Instrument Company. When the impact ham-
mer excites the impact position in the plate as shown 
in Fig. 9, the acceleration at positions S0, S1 and S2 is 
measured by experiment. The theoretical displace-
ments are obtained by using the approximate SDPT 
and their accelerations are calculated by double dif-
ferentiation of those displacements. Because the cut-
off frequency of the measured accelerations is 25kHz, 
the theoretical acceleration is also calculated up to 
25kHz. The frequency resolutions in both of theoreti-
cal and experimental acceleration are 20Hz. The 
sampling ratio in both the theoretical and experimen-
tal acceleration is 50kHz. Fig. 10 shows the compari-
son between the simulated waveform using SDPT 
and measured waveform. The waveforms in the top 
line are non-filtered waves, and the waveforms in 
bottom are filtered waveforms. The measured wave-
forms show reflected wave, whilst the simulated 
waveform has only direct wave in infinite plate. The 
waveforms measured at sensor S0 and sensor S1 are 
affected more early by reflected wave than waveform 
measured at sensor S2 since they are a far distance 
from the impact point and nearest to the edge of plate. 
In the region of direct wave, in order to remove the 
effect of a reflection wave, a band pass filter is used. 
After filtering, in the region of direct wave, the simu-
lated waveforms are well corresponding with the 
measured waveforms. The spectrum of impact load 
ˆ ( )f ω used for the impact is shown in Fig. 11. In the 

reference [16], the impact force is inversely deter-
mined with waveforms measured only by the three 
sensors as shown in Fig. 7 and with the Green’s func-
tion theoretically obtained by using the exact solution.  



 S. K. Lee / Journal of Mechanical Science and Technology 22 (2008) 1349~1358 1357 
 

  

         
 
Fig. 7. Schematic of experimental setup.                                                           Fig. 8. Schematic of experimental setup. 
 
 

 
 
Fig. 9. Location of impact hammer and accelerometers. (S0 = 447mm, S1 = 447mm, S2 = 200mm from Impact position). 
 
 

    

    
 
Fig. 10. Comparison between the simulated waveform using SDPT and measured waveform. 
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Fig. 11. Frequency spectrum of impact force measured 
throughout force transducer. 

 
This is processed after determining the location of 
impact load. 
 

4. Conclusion  

The paper presents a method for the determining 
the impact load on the thick plate inversely based on 
Green’s function and the waveform due to impact 
load at the arbitrary point on the surface of the plate. 
The waveform is theoretically calculated based on 
plate theory. The exact plate theory and the approxi-
mated shear deformation theory (SDPT) are em-
ployed instead of the CPT since the CPT overesti-
mates the group velocity at high frequency in a thick 
plate. The estimated waveform very well corresponds 
with the experimental results and the impact load is 
inversely determined with theoretical Green’s func-
tion.  
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